АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ «Физика»

по основной профессиональной образовательной программе по направлению подготовки 13.03.02 «Электроэнергетика и электротехника» (уровень бакалавриата)

Направленность (профиль): Системы электроснабжения

Общий объем дисциплины – 10 з.е. (360 часов)

- В результате освоения дисциплины у обучающихся должны быть сформированы компетенции с соответствующими индикаторами их достижения:
- 1. ОПК-3.2: Применяет естественнонаучные и/или общеинженерные знания;
- 2. ОПК-3.3: Участвует в теоретических и экспериментальных исследованиях, применяемых для решения профессиональных задач;

Содержание дисциплины:

Дисциплина «Физика» включает в себя следующие разделы:

Форма обучения заочная. Семестр 2.

Объем дисциплины в семестре – 5 з.е. (180 часов)

Форма промежуточной аттестации – Экзамен

- **1. Введение.** Физика как наука. Применение естественнонаучных знаний в профессиональной деятельности. Форма и порядок участия студентов в теоретических и экспериментальных исследованиях, применяемых для решения профессиональных задач. Виды взаимодействия. Наиболее общие понятия и теории. Физика и другие науки. Роль измерений в физике. Единицы измерений и системы единиц..
- **2. Механика..** Система отсчёта. Траектория материальной точки. Скорость. Ускорение и его составляющие. Угловая скорость и угловое ускорение. Закон Ньютона. Масса и сила. Импульс, импульс силы, закон сохранения импульса. Момент силы. Основной закон динамики вращательного движения. Момент инерции и его определение. Момент импульса и закон его сохранения. Энергия, работа, мощность. Кинетическая и потенциальная энергии. Закон сохранения энергии.
- 3. Электростатика и постоянный ток.. Электрические заряды. Закон Кулона. Напряженность и поток вектора напряженности в электрическом поле. Теорема Гаусса и её применение. Потенциал электрического поля и его связь с напряженностью. Поляризация диэлектриков. Электроемкость проводников. Конденсаторы. Энергия электрического поля. Электрический ток и его характеристики. Электродвижущая сила. Разность потенциалов и напряжение. Электрическое сопротивление при последовательном и параллельном соединениях. Закон Ома для участка и полной цепи. Работа и мощность тока. Законы Кирхгофа. Токи в средах..
- **4. Молекулярная физика и термодинамика..** Газовые законы идеального газа. Уравнение Клапейрона-Менделеева. Основное уравнение молекулярно-кинетической теории. Распределение Максвелла молекул по скоростям. Явления переноса. Внутренняя энергия газа. Теплота и теплоемкость. Работа газа. Первое начало термодинамики. Адиабатический процесс. Круговой процесс. Обратимые и необратимые процессы. Второе начало термодинамики. Цикл Карно и его КПД для идеального газа. Энтропия..

Форма обучения заочная. Семестр 3.

Объем дисциплины в семестре – 5 з.е. (180 часов)

Форма промежуточной аттестации – Экзамен

- **1.** Электромагнетизм. Магнитная индукция. Закон Ампера. Закон Био-Савара-Лапласа и его применение. Сила Лоренца. Виды магнетиков. Закон полного тока. Явление электромагнитной индукции. Закон Фарадея для ЭДС индукции. Самоиндукция и взаимоиндукция. Энергия магнитного поля. Колебательный контур. Формула Томсона. Образование электромагнитных волн..
- **2. Волновая оптика. Квантовая оптика..** Интерференция света. Интерференция в тонких пленках. Применение интерференции света. Дифракция от сферического и плоского фронтов волны. Поляризация света при отражении и в анизотропных средах. Анализ поляризованного света. Тепловое излучение. Абсолютно черное тело. Законы теплового излучения. Виды фотоэффекта. Законы Столетова для фотоэффекта. Формула Эйнштейна для внешнего фотоэффекта. Давление света. Эффект Комптона..

3. Атомная и ядерная физика.. Спектры излучения водородоподобных атомов. Постулаты Бора. Теория атома водорода по Бору. Элементы квантовой механики. Квантовые числа и их физический смысл. Принцип Паули и таблица химических элементов Менделеева. Протонно-нейтронная структура ядер атома. Закон радиоактивного распада. Энергия связи ядер. Реакция деления ядер. Термоядерные реакции синтеза атомных ядер..

Разработал:

заведующий кафедрой, доцент

кафедры ЭЭ С.А. Гончаров

Проверил:

Декан ТФ Ю.В. Казанцева